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INTRODUCTION 

Hot Atom Chemistry 

"Hot atom chemistry" is the study of the reactions of atoms ex­

hibiting energies in excess of the ground state or thermal energies. The 

term "hot atom" will be used in this discussion to refer to all activated 

atoms, regardless of the charge possessed by the atom. The most common 

method of producing hot atoms has been by utilization of nuclear reac­

tions. In any nuclear reaction the product nucleus receives recoil energy 

as a result of the absorption or emission of particles involved in the 

reaction. This recoil energy may be as high as several Mev. 

In the last few years a rapid increase in the interest in the chemi­

cal behavior of hot atoms produced from radioactive decay by beta emis­

sion has developed. In rare cases the recoil energy resulting from beta 

decay may be as high as ~10^ ev, i.e., and Id®. However, the recoil 

energy is usually on the order of chemical bond energies, and as such, 

the chemical effects which occur as a result of beta decay must, in a 

large percentage of decays, be due to other modes of excitation. The 

nature of these modes will be discussed below. 

In order to be able to study processes of this type, there are two 

requirements which must be met: 

1) Since hot atoms are formed in amounts that are smaller than 

those that can be chemically detected, it is necessary that 

the hot atom be radioactive. 

2) There must be no exchange between the radioactive atom and 

stable atoms of the same element in the system. 
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Definition of Beta Decay-

Beta decay is the process in which an electron and a nucleus inter­

act, the result being the change in the atomic number of the nucleus by 

one unit vAiile the mass number remains unchanged- There are three proces­

ses -v^ich are termed beta decay: 

1) The emission of a negative electron. 

2) The emission of a positive electron. 

3) The capture by the nucleus of an orbital electron. 

The chemical effects resulting from the first process were the object of 

this study. 

Sources of Molecular Excitation 

There are several factors which may determine the state of the daugh­

ter atom, in particular the excitation and charge of the atom, and the 

final forms of the atom under certain given conditions. 

In the process of negative beta decay itself, excluding any other 

source of excitation or ionization, the immediate result is a transformed 

dau^ter atom bearing a single positive charge. If the decaying atom is 

a constituent of an isolated molecule, the primary product will be a mo­

lecular ion with a single positive charge. There are several secondary 

processes that may leave the dau^ter ion in a state of electronic, vibra­

tional, rotational, or translational excitation, or with a larger positive 

charge due to loss of additional electrons. The most important of these 

are: 

1) Direct collision of the beta particle with an orbital electron 

as the beta particle leaves the nucleus. 
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2) Vibrational and rotational excitation resulting from the recoil 

energy imparted by the beta emission. 

3) The internal conversion of internal bremsstrahlung and the 

vacancy cascades which follow. 

4) The "shaking" of the atomic core as a result of the sudden 

change in the nuclear charge. 

Beta particle - orbital electron collision 

Migdal, Feinberg, and others in the 1940's calculated theoretically 

the probability that the beta particle upon emission will interact with an 

orbital electron (1,2). Œheir calculations show this probability to be 

negligible. On the other hand, Grard (3) believes that in the case of 

heavy beta emitters, the beta particle after leaving the nucleus may inter­

act with one of the electrons surrounding the nucleus to the degree that 

it does become important. Feinberg in 1965 (4) developed equations that 

show that direct collision of the beta particle with an atomic shell elec­

tron may in some cases play a predominant role over the shaking process in 

the ionization of the datighter atom. 

Recoil energy 

Usually the vibrational and rotational excitation which is observed 

in the dau^ter ion is a direct result of the recoil energy given to the 

dau^ter atom by the departed beta particle. The kinetic energy for the 

heavy particle does not require relativistic treatment, whereas that for 

the beta emission does. 

p p 
For any particle,. E = Ym^c^ = m^c + T, Tdiere m^ is the rest mass, 

T is the kinetic energy, and c is the speed of light. This leads to 
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m = Ymo = ^ fi'i 

vhere y = 1 and g = v/c. 

/1 

From the conservation of momentum we have 

MV = mv (2) 

where M and V are the mass and velocity of the heavy particle and m and v 

are the mass and velocity of the beta-particle. Substitution of Equation 1 

into Equation 2 and subsequent algebra leads to 

(-•J"") Eg (5) 

This equation is still in an unuseable foim since m, the relativlstic 

o p 
mass, is not known. After rearranging Eg = mc -m^c and substituting the 

result into Equation 3, the following equation is obtained, 

which may be rearranged to the more familiar form of 

Ep = 548 Eg(max) + 556 e| (max) (5) 

where E (max) is in Mev and is in ev (5) . 

The above formula is applicable only in those rare cases in which the 

neutrino emitted during beta decay removes no energy. Generally, the 

energy of the emitted beta particle varies from zero to a maximum value 

for a certain isotope. Thus, if the recoil energy is to be dealt with 

quantitatively, a recoil energy spectzrmi is involved. This recoil energy 

spectrum depends not only upon the total energy of the decay but also upon 
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the angle between the two departing particles. Therefore, it is necessary 

to allow for the simultaneous emission of the beta particle and the neu­

trino in the calculation of the energy of the recoil atoms. The difficul­

ties in calculating this energy spectrum are great, since there is very 

little data available on the angular correlation of the beta particle and 

the neutrino. 

Sues s (6) has shown specifically for the case of diatomic molecules 

that the recoil energy is not all available for bond rupture; that is, 

the recoil energy will be divided between the translational energy of the 

total mass, and the internal energy, E^, which is available for 

activation or dissociation. 

% = ®(M + m) % (G) 

If the molecule does not instantaneously dissociate, its kinetic energy 

will be given + m) = p^/2(M + m) . The recoil energy given to the 

atom itself is Ejj = p^/2M, where the same value of p applies since there 

must be conservation of momentum. Substitution of these two equations 

into Equation 6 results in 

% = 

131 Ihe consequences of the decay of Te as a constituent atom in 

diethyl telluride and in di-n-butyl telluride were the object of this 

study. Hence the application of these equations will be illustrated with 

the hi^est energy beta particle emitted by Te^^^, -which is observed in 

60^ of the transitions and has a maximim energy of 2.15 Mev (?). Prom 

Equation 5 a value of 27.9 ev is obtained as the recoil energy of the atom. 
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Ep, and from Equation 7 a value of 4.9 ev is found for if ethyl iodide 

is the primary product resulting from the decay of Te^^^ from diethyl-

telluride and if the ethyl radical and the iodine atom are assumed to be 

rigid bodies. Similarly, if n-butyl iodide is the primary product 

resulting from the decay of Te^^^ from di-n-butyl telluride and if the 

n-butyl radical and the iodine atom are assumed to be rigid bodies, Ej^ is 

calculated to be 8,2 ev. Since the average energy of the beta rays, E, 

with a given value of E is approximately one-third of the maximum 

value ( 8), the average recoil energy transmitted to the two molecules, 

ethyl iodide and n-butyl iodide, will certainly be much less as was noted 

earlier. 

Internal conversion 

An alternative to the emission of a Y-ray as a means of de -excitation 

of the dau^ter atom is internal conversion. This is the process by which 

energy is transferred from the excited nucleus to an orbital electron, 

which is ejected from the atom (8) . The ratio of the rate of the internal 

conversion process to the rate of Y-emission is the internal conversion 

coefficient, a. Generally, the internal conversion coefficient for any 

particular shell increases with decreasing energy, decreasing AI, and 

increasing Z. Since it is the inner electrons which are internally con­

verted, the result is a vacancy which must be filled. This is accomplished 

by an electron of hi^er energy "falling" into this vacancy and emitting 

an X-ray in which = Ej^ - E^. This X-ray may interact with another 

electron, the result being its ejection (Auger electron). This effects 

a cascade of vacancies, and the product atcan may become highly charged. 
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The efficiency for the ionization of an atom is shown by charge spectra 

of atoms which possess large internal conversion coefficients. The 

average charge for Xe^^^, which results from the decay of Xe^^^, 98% 

internally converted, is +7.9 (9). An average charge state of +10.5 

•was obtained for the decay of Br®*^ (from CgHgBr) (lO) . 

Frequently low energy gamma rays accompany beta decay and the phe­

nomenon of internal conversion may then become important to the chemical 

consequences of beta decay. The contribution which this process makes to 

systems observed in this study will be discussed in detail later. 

"Shaking" theory 

According to present theory the principal cause of excitation and 

ionization of recoil atoms resulting from beta decay is the "shaking" of 

the atomic core as a consequence of the sudden change in the charge of the 

nucleus. Because the beta particle leaves the nucleus in a time consider­

ably shorter than the periods of electronic motion, the sudden change in 

the nuclear charge causes a perturbation of the electrostatic environment 

of the atomic core (1,2,11,12,13,14,15). Usually the electronic cloud is 

able to contract adiabatically to the increase in charge of the nucleus. 

However, there are instances in which excitation does occur, and the exci­

tation energy for the nonadiabatic process is just that energy which in a 

normal adiabatic contraction would be carried away by the departing beta 

particle. 

This excitation energy has been shown by Berber and Synder (16) to be 

the energy which would be carried away by the beta particle in an 
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adiabatic process minus that energy which the beta particle actually 

-carries away in the non-adiabatic process, 

E = -(E(Z') - E(zl| + e(Z' - Z) *(z), (S) 

in which E(z) is the total energy of the parent atom, E(Z') the energy of 

the dau^ter atom, and (j)(z) is electrostatic potential produced at the 

surface of the parent nucleus by the electrostatic cloud. They then de­

rive an expression for the average excitation energy of a dau^ter atom 

following beta decay, as given by 

E = 22.85z2/5(z'-Z)2 ev. (s) 

This value is the average taken over the probability distribution for the 

transition from the ground state of the parent atom to the many final 

states of the dau^ter. This statistical model breaks down for li^t 

131 atoms. According to this model the average excitation energy of I 

which results from the beta decay of Te is 110 ev. 

Generally, the published calculations of the probabilities of ioniza­

tion due to the sheiking effect are inaccurate because of the approxima­

tions that were made. The applicability of the non-adiabatic approxima­

tion to the inner shells of heavy atoms is satisfactory, but this is not 

so for the electrons in the outer shells. For the electrons in the outer 

shells the action is not so powerful because it is delayed. However, the 

probability of ionization in the outer shells is still more important, 

since electrons in these shells are less fiimly held. 

It is known that the accuracy of the non-adiabatic approximation de­

creases with increase in Z and with increase in the shell number. 



www.manaraa.com

9 

Activation by the (n/y) Process 

Several preliminary experiments were performed in which solutions of 

an organotelluride in a hydrocarbon were prepared, irradiated, allowed to 

decay, and analyzed for the products resulting from the beta decay of 

Te^^^ to However, it is possible that some of the products observed 

in these experiments may have resulted from the (n/y) reaction on Te^^^ 

rather than the beta decay. That is, a C-Te bond in the original organo­

telluride may have been ruptured as a result of the Te^^®(n,Y) Te^^^ reac-

131 tion, so that the decay occurred from Te in a different chemical form. 

When a thermal neutron is absorbed by a nucleus, a compound nucleus 

is formed which possesses an excess energy equivalent to the neutron 

binding energy of the nucleus. This energy is emitted in the form of one 

or more gamma rays. It has been found that on the average 3.4 gsumna rays 

are emitted per neutron absorbed (l7). If multi-gamma emission occurs, 

the energy that the nucleus receives will depend on the energies of the 

gamma rays as well as on the relative angles of emission. 

The particular reaction in question is Te^^®(n,Y)Te^^^^ and for this 

reaction the binding energy is 6.3 Me v. If this energy were emitted as 

one ga-Ttimfl. ray, the Te^^^ nucleus would receive a recoil energy of = 

5361^/131 = 164 ev, -vdiere Ey is the energy of the gamma ray in Mev and 131 

is the mass in anru. The above equation was derived under the assumption 

that the recoil energy exceeds the bond energy sufficiently that the mole­

cule is ruptured; and thus there is no need to consider the recoil energy 

to be absorbed by the whole molecule. However, if the energy available 

is of the same order of magnitude as that required for bond rupture, some 
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of the energy may be dissipated as translational energy of the whole mole­

cule, Ej., and bond rupture may be prevented. In the latter case, the in­

ternal energy is given by Equation 7. The recoil energy may be somewhat 

less than the calculated value due to the fact that some momentum may be 

canceled as a result of the relative angles of the gamma ray emission. 

Even then it would still appear that an extremely large fraction of the 

C-Te^^^ chemical bonds would be broken by the (n,Y) process. Studies of 

similar systems, i.e., the alkyl iodides, show bond rupture occurs in a 

large percentage of the neutron capture events. 

Chemistry of Organotellurides 

Alkyl and aryl tellurides tend to be quite reactive. Rochow et al. 

(18) has provided one of the best reviews on the chemistry of organotel-

lurium chemistry. A few reactions which are germane to the present study 

are mentioned here. 

Alkyl and aryl tellurides react quite readily with oxygen upon expo­

sure with air at room temperature to form EgTeO. Only in the case of the 

dimethyltelluride does further oxidation to B2Te02 occur. 

Alkyl and aryl tellurides react with alkyl or aryl halides to readily 

form telluronium halides. 

BgTe + R'X > BgE'TeX (lO) 

The telluronium halides are quite stable and are saltlike. 

Alkyl and aryl tellurides add halogen readily to form diorganotel-

lurium halides. 

BgTe + Xg ^BgTeXg (ll) 



www.manaraa.com

11 

The most extensive tables of the properties of organotellurium de­

rivatives to date is that of Krause and von Grosse (19) . 

Historical Background 

Hot atom chemistry 

Hot atom chemistry was bom in 1934, at which time Szilard and 

Chalmers reported a study in which samples of ethyl iodide were irradiated 

with thermal neutrons from a radium-beryllium source (20) . They found 

128 
that a large fraction of the I activity could be extracted into an 

aqueous layer that contained a suitable reducing agent. This, of course, 

shows that enou^ energy had been aquired from the I^^(n,Y)l^^ process 

to break the C-I bond. 

Since that time there have been a few hundred papers written on this 

subject as well as several excellent review articles (21-30). 

There have been rather sophisticated theories presented for explain­

ing the chemical reactions of hot atoms in the gaseous phase, such as the 

Estrup-Wolfgang theory (31,32). This mathematical model does not predict 

if a reaction will proceed by virtue of kinetic ener^, charge, or elec­

tronic energy, but it can quantitatively predict the effects of inert 

moderators on "hot" reactions. Gordus and Hsiung (33) have discussed 

the activation of atoms joined to a molecule by a single bond, in the 

gaseous state. Data were presented for the beta decay of 0^^ and T on 

the net recoil energy needed for bond rupture, on the rotational and vi­

brational excitation energies received by the rupturing bond, on the in­

ternal energy of the radical originally bonded to the activated atom, and 
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on the kinetic energy of the radicals- However, there irj not at the 

present a good theory which will explain the mechanisms of reactions 

occurring in the condensed state. 

Chemical consequences of beta decay 

The first attempt to observe the chemical effects of beta decay was 

reported in 1934 by Martenson and Leighton ( 34) , who studied the decay of 

Pb^^'^(EaD) to Bi^^^(RaE) from the volatile compound, Pb^^^( CHg) ̂. Some 

of the activity of as well as that of its dau^ter Po^^^, was de­

tected in the volatile fraction, signifying that there had not been com­

plete decomposition of the original compound. 

The study of the chemistry of "hot" atoms initiated by beta decay was 

not reported again until the late 1940's. The study of the chemical conse 

quences of beta decay has since then been characterized by a wide variety 

of investigations. 

The chemical results of all three modes of beta decay have been inves 

tigated. Burgus and Kennedy (35) studied the valence state of radio-

chromium produced by the positron decay of Mn^^ from CsMn^^O^, Mn^^Og, and 

Mn^^COj in solutions of the compounds as well as in crystalline form. 

Carlson and White (36), with the use of a special mass spectrometer, 

1 pC 
studied the chemical consequence of the decay of I by electron cap­

ture to Te^^^. The decay was observed from and and it 

was found that only of the Te-hydrocarbon ions remain intact, that 

in both cases tellurium ions were found with charges as hi^ as +18 with 

an average of +9, and that singly, doubly, and triply charged carbon ions 

were found in greater abundance than the hydrocarbon ions. These results 
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are due to the coulombic repulsions of the charge which was distributed 

over the entire molecule. The high charge is a direct result of the 

Auger processes which are initiated by the electron capture process. 

An example of the variety of methods used for obtaining data on t^he 

chemical consequence of beta decay is a study done by Hashimoto and 

Hirotoshi ( 37), who studied the hot atom effects of the electron capture 

decay in cobalt( II) oxalate by using the Mossbauer transition in Fe^^. 

No evidence of hot atom effects were found, and the results were inter­

preted as due to the rapid reduction of high-charge recoil atoms by the 

oxalate ion. 

Vacuum techniques were employed in studying the decay of in 

ethane by labeling both carbon atoms and observing the products after one 

decay. In 47^ of these decays the basic molecular structure was retained 

in the product, (38). This retention was shown to be primary 

retention; that is to say, the product was a result of failure 

to rupture any bonds rather than a recombination of fragments. The ex­

perimental retention agrees quite well with the theoretical value for the 

probability of non-dissociation due to beta decay of 0.60 + 0.20 (39). 

77 The distribution of radioarsenic^ As % among products has been in-

77 vestigated in the beta decay of Ge and compared to the distribution of 

As^® among products resulting from the As^^(n,Y) As^® reactions ( 40,41) . 

It was shown that althou^ the products tend to be the same, suggesting 

identical reaction mechanisms in both cases, their yields are not the same. 

Since the primary product after negative beta decay has a charge one 

greater than the parent (atom or ion) , several investigations have been 
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performed in order to determine the fraction of decays which do result in 

a product with a single charge greater than the parent. The decay, 

, ( 42) was studied using cerium acetylacetonate in solu­

tions of CSg, CCl^, and water. No extensive irreversible rupture of the 

acetylacetonate molecule was found to occur when the decay took place in 

the crystalline form or in dry organic solvents. This was not the case, 

however, if the decay took place in organic solvents containing water and 

excess acetylacetone; some chemical change was noted. The authors pre­

sumed the excited dau^ter, Pr^^^A^ to react with any excess acetylace­

tone and the product to be hydrolyzed on contact with H^O. The decay, 

(la^^^)^"*" >(Ce^^3)^^, was investigated (43) in nitric acid solution 

with the result that ~60^ of Ce^^^ was found to be in the +4 state. 

In a study of the decay of Se®^ and in inorganic media Davies 

et al. (43,44) found that in the case of Se®^ at pH 7 40% of the total 

Br®^ formed was observed as BrOg, and the results were quite similar for 

Se®^. In a similar set of experiments at pH 11 about 24-30% of the ac­

tivity was found in the form of BrOj. Since these fractions did not 

change regardless of the chemical state of selenium, SeO^ or SeO^, the 

authors felt this to indicate complete breakdown of the original ions. 

Anderson and Rnutsen (45) found 77% of the total activity was 

in the form of Sb(V) when the beta decay occurred from the compounds 

KgSnClg and (BH^)gSnClg. 

77 The decay of Ge from GeOg has been studied by several groups in 

77 attempts to determine the charge states of the resulting As . However, 

the reported results are quite different. Baro and Aten (46) found 69.2% 
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as As (m) and 28.8'/) as As(v) by using standard 'Vet-chemical " procedures 

for the separations. Fidelis et al. (47) found all of the activity as 

As(v) by using reversed phase partition chromatography as the method of 

separation. Finally, Genet and Ferradini (48) using a paper electro­

phoresis method found 85^ as As (ill) and 15^ as As(v) . 

Experiments using the mass spectrometer have contributed to our know­

ledge of the chemical effects of beta decay, since this technique permits 

the observation of the primary products resulting from beta decay, free 

from intermolecular effects. Snell (49) studied the molecular dissocia­

tion following the radioactive decay of tritium from tritium hydride and 

found (He^)"*" to be present in 93^ of all occurrences. Wexler (50) found 

the probability of occurrence for (He^H)"*" from the decay of TH to be 89.5% 

and for (THe^)"*" from TT to be 94.5^. The agreement between the two 

studies is assumed to be quite reasonable since the ion optics of the two 

mass spectrometers may have been greatly different. The fact that (THe^)"^ 

is larger than (HHe^)"*" is nicely explained by comparison of the zero point 

energies of TH and TT. A small difference in zero point energies may 

result in a large difference in probability of dissociation, as can be 

seen by invoking the Frank-Condon principle for the beta transition. 

In the same set of expejriments Wexler found that experimentally the 

probability of ionization resulting from the shaking effect was 1.7 to 

2.3^ (so) as compared to the theoretical value of 2.5% for the probability 

of ejection of the single electron in the decay of atomic T to the (He^)"^ 

(1). 

In sharp contrast to the large fraction of the bound dau^ter molecu­

lar ion, (HHe^)'*', the behavior seen in the alkyl tritides is that of 
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instability of the C-He bond in the dau^ter molecular ion which results 

from the decay of tritium in alkyl tritides. In a study of tritivan beta 

decay from ethyl tritide Wexler and Hess (5l) found that ( CgH^He^) ̂ 

occurred in of the transitions and in 78%. In the same 

paper the authors report a study of the fragments resulting from the beta 

decay of from CgHgBrBr^^; in which the major fragment was ( CgHgBr) 

in 69.8^ yield. These results appear to indicate that the dissociation 

pattern shown in the tritiated organic compounds is not the result of 

3 3 peculiarities in the nuclear transition of H to He . making use of 

Eosenstock's quasi-equilibrium theory of unimolecular dissociation Wexler 

was able to estimate the molecular excitation energy available from the 

beta transformation of tritium in CgHgT. 

In a later paper Wexler et a2. (52) reported the fragment spectra of 

primary and secondary tritiated propane and of o-, m-, p-, and a-mono-

tritiated toluene. In these studies the yield of the daughter molecular 

ion (R-He^)is also very small. The initial fragment ion, that is, the 

precursor to all other fragments, appears to be the molecular ion re-

3  . . . .  suiting from the loss of a neutral He and corresponds roughly in all 

cases, to the values expected for the fraction of beta transitions to 

states with little or no excitation. If the fragment pattern had been 

different for the two isomers of tritiated propane and for the various 

isomers of tritiated toluene, it mi^t have been possible to verify the 

localized excitation of the shaking process. However, it is known that 

radiationless transitions occur in times much shorter than periods of 

vibrational motion, and thus localized beta transitions may be obscured. 
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The q^uasi-equilibrlxjin theory of unimolecvilar dissociation postulates 

transitions such as these as the vehicle by which excitation energy is 

randomly distributed throu^out the whole molecule. The spectra of the 

corresponding isomers are similar, and this is taken as confirmation of 

the quasi-equilibrium theory of unimolecular dissociation. 

White and Carlson (53) reported the probability of the occurrence 

of ( CHjXe^^.^) from the nuclear decay of to be 70%, tdiich is in 

direct contrast to the decay of CH^T in which hardly any (CH^He^)"'' was 

found (54) . In a later paper the same authors reported a mass spectro-

1 metric analysis of the ions resulting from the nuclear decay of CH^I 

and ( 55) . They found the percent abundances for the parent ions, 

( CHgXe^^^)and (CgEgXe^^^)to be 34^ and 1.4^, respectively. The 

author's conclusions were that: l) CgHg-Xe undergoes decomposition more 

readily than CH^-Xe, 2) the greater bond severance of the C-Xe bond is due 

to the greater recoil energy present in the decay, 3) coulombic 

shaking may be used to explain the appearance of the lower-charged Xe 

ions and most of the hydrocarbon fragments, and 4) multiple Auger pro­

cesses following internal conversion are given as the cause for the more 

highly charged Xe ions. There were about 20 different fragments reported 

for each particular decay. 

The study of the chemical consequences of beta decay from organo-

metallic systems has been receiving increased attention. These compounds 

have definite advantages. After the study by Martens on and Lei^ton (34) 

on the beta decay of from Pb^^^(CSg)^, no other work was reported in 

this particular phase of the field until 1948. At that time Edwards and 

Coryell (56) studied the same system in the gas phase and found the 
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fraction of the bonds ruptured, 8%; to be independent of the pressure of 

the parent compound. The reason for this value was not evident. In 1953 

Ed-wards e^ a^. (57) examined the Fb^^^ system in more detail. This time 

they observed the decay of in solutions of benzene, octane, 

210 
and CCl^ and found the occurrence of Bi in the non-volatile fraction to 

be 60-809c. The authors thou^t this fraction occurred because of bond 

rupture resulting from internal conversion and vacancy cascades. 

Nefedov reported the first study of beta decay involving aromatics 

(58) . He used the carrier method in separating the decay products from 

Pb210(CgHg)^ and Pb^^'^(CgH5)3Cl. The most exciting factor here was the 

discovery of the complex organcmetallic compounds BitCgH^)^ and 

Bi( 03115)3012. The system Pb^lS ^ Bi212 -was also studied by the same 

on Q OlQ 
authors (59) for the same compounds, Pb (05115)4 and Pb (05115)301. 

Nefedov et a2. (60) also studied the chemical state of Bi^^*^ obtained by 

the beta decay of Fb^^^ from (Fb513)2, FbPhgKO^, and FbPh2(N05)2. 

Nefedov et a2. (61) then studied Pb^^^ from FbPhgOl and FbPh^ and 

210 PIP 
compared the results to those from the decay of Pb and Pb from the 

Pin PIP 
same compounds. The ratio of the inorganic yields from Pb , Pb , and 

Pb^^^ in both compounds was the same as the ratio of the total internal 

conversion coefficients of Pb^^*^, Pb^^, and Pb^^^. Identical experi­

mental conditions were used in all cases. 

Because previous studies had been done using the isotopic carrier 

technique, all of the complex features of the chemical changes could not 

be reproduced. In order to study these features in more detail paper 
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chromotography was used by Nefedov (62) to again study the decay products 

of Pb^lOfCgH^ÏCl. 

It had been suggested that the appearance of Bi'Ph^ and BiHi^Clg 

mi^t, in part, be due to the interaction with the surrounding molecules. 

In order to illuminate the situation, Nefedov et al. (63) studied the de­

cay of radical deficient Pb^^^(CgHg)2Cl2, and they found the yield of 

BiPhj and BiPh^Cl^ to be very low. Thus in this case the chemical changes 

accompanying beta decay do not involve the surrounding molecules. 

Duncan and Thomas (64) were the last to examine the Pb^^*^(CHg)^ sys­

tem and did so under conditions in which the products were not under the 

influence of neighboring molecules. One hundred percent of the daughter 

Bi^^*^ was deposited on the walls of the containing vessel. This was taken 

to mean that the dau^ter Bi(CHg)^ disproportionates to yield charged bis­

muth containing fragments rather than Bi(CHg)g. 

In other beta decay studies of organometaHic compounds, Merz ob­

served the chemical reactions following the decay of tetraphenylgermane 

(Ge^^) (65), and Nefedov et al. (66) observed the chemical reactions fol­

lowing the decay of Sb^^ from some phenyl and tolyl derivatives. 

Chemical effects of beta decay of tellurium isotopes 

In 1952 Keneshea and Kahn (67) irradiated a solution of TeCl^ dis­

solved in benzene and examined the chemical state of I . Eighty-seven 

percent of the activity was extracted into an aqueous layer, while 10^ was 

found to be CgHgl. The study of the chemical consequences of beta decay 

of the tellurium systems was donnant then until the 1960's. 
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In 1961 Ctmmiskey et al. (68) reported separating the 1^32 products 

132 
resulting from the decay of Te in an inorganic media. The separation 

was accomplished by using the carrier method, and the products observed 

were of three different types — reduced forms, iodate, and periodate. 

Later a method for studying the behavior of iodide, iodate, periodate, 

tellurite, and tellurate ions in WaOH and NaCl solutions by the use of low 

voltage and hi^ voltage paper electrophoresis was reported (69). Gordon 

(70) again studied the decay of Te^^^, and this time the separations were 

accomplished using paper electrophoresis. Whereas Cummiskey had found a 

considerable amount of periodate resulting from the decay of Te( 17), 

Gordon found the quantity of periodate to be quite small. Gordon suggests 

that this small quantity of periodate results from the complete severance 

of bonds due to the large internal conversion coefficient of Te^^^. 

Therefore, any amount of periodate present must be due to the reaction of 

the excited iodine species with the medium. 

The interest in the chemical effects of the tellurium systems in 

organic media was revitalized in 1961 by Halpem (71) . This study was 

concerned with the bond rupture resulting from the beta decay of dibenzyl-

telluride(Te^^^) . The dibenzyltelluride was prepared by the action of 

benzyl chloride on sodium telluride(Te^^^), which had been prepared fol­

lowing neutron irradiation of tellurium powder. The percentages of the 

activity as benzyl iodide, methyl iodide, phenyl iodide, iodotoluene, 

and inorganic forms were determined by using carriers and fractional dis­

tillation to accomplish the separations. The retention (ratio of 

atoms existing in benzyl iodide to the total number of atoms) was 
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fovuid to be 1.8'/) in solid dibenzyltelluride, indicating that the C-Te 

bond was ruptured in 98)!, of the events. This indicates that the shaking 

effect or the large charge resulting from internal conversion may have 

been responsible for the bond i-upture. Even if recoil energy had been re­

sponsible, essentially all the kinetic energy would have been used in the 

131 
bond rupture leaving the liberated I atom thermalized. 

Halpem also reported scavenger studies on the dibenzyltellu-

ride(Te^^^) systems. Allyl iodide and molecular iodine were both used as 

scavengers ; the conclusions were that 28^ of the I atoms were bom with 

thermal energies and that the other 72% of the atoms are epithermal, 

that is, they possess excess energies of l-~20 ev. In all the experi­

ments, however, 53-77^ of the products formed were unidentified. 

Adloff (72) reported some interesting althou^ quite qualitative, 

132 
work in 1962. Functional groups were studied by dissolving Te Cl^ in 

•various alcohols and toluene, and it was found in the case of alcohols 

that rupture occurs mainly in the C-C bond of the carbon atom of the 

functional group. 

A study reported by Halpem (73) in 1963 compared the chemical ef­

fects of the beta decays of Te^^^ and Te^^^ in solutions of TeCl^ in 

131 
toluene. Although the recoil energy is greater in the case of the Te 

Te^^^ > jl31 transition as a result of the difference in the beta ener-

132 
gies, the reactivity of the I atom appears to be greater. This com­

parison was based on the results that 25% of the total and 68% of the 

activities were found in the organic fraction after the decay. In 

both cases a rather large fraction of the activity was found in the form 

of methyl and phenyl iodides indicating bond rupture between the benzene 
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ring and the methyl radical. Approximately one-third of the organic ac­

tivity was found to be in an unidentified higher "boiling fraction. The 

relative yields of the organic iodides in each particular experiment dif­

fered very little and this vas taken to indicate independence of the 

product distribution on the kinetic energy of the atoms. 

Both elemental iodine and allyl iodide were used as scavengers in the 

above study. The organic yield of I decreased from 25% to 11% and that 

of decreases from 68^ to 15^ upon addition of 10"^ mole fraction of 

elemental iodine. Halpem suggested that this may be due to the recoiling 

atom losing its unique charge properties by a charge exchange between the 

recoiling atom and a molecule of iodine: 

^ ̂ recoil^ ^ ^2 * ̂recoil ̂  ̂  

Upon addition of 10~^ mole fraction of allyl iodide the total organic 

yield increased to ~90^ in both cases. Since the scavenging action of 

allyl iodide occurs only by way of its rapid exchange with the thermalized 

recoil atom, the majority of recoil atoms must possess kinetic energy in 

the thermal region. 

In Halpem's study the two solutions were prepared by different pro-

1 cedures for this comparison. A solution of Te^^ Cl^ in toluene was pre­

pared and allowed to stand for 50 hours while the decay occurred. How­

ever, in the case of = 25 min) the solution of TeCl^ in toluene 

was prepared and then activated in the thermal column of a reactor for a 

period of 20 min. Under these conditions Te^^l is the principle activity. 

1^51 
Halpem asserted that all of the Te formed mi^t not be in the form of 
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due to the effects of the Te^^'^(n,Y)Te^^^ reaction, ac well ac to 

radiation reactions occurring in the reactor field. Both of these factors 

may influence the final products. He reasoned, however, that since the 

covalent bond is nearly always ruptured in the case of dibenzyltellu-

ride(Te^^^) (7l), this should also happen in the case of Te^^^Cl^. Also, 

in several experiments solutions of Te^^^Cl^ (Te^^^, 77 hr) in toluene 

were exposed to the reactor gamma radiation field for 20 min, and since 

1 the value of the total organic yield of I was not influenced Halpem 

inferred that the yield of I should not be affected. 

In 1964 Narayan and Iyer (74) studied the decay of Te^^^ from the 

chloride complex of tellurium with isopropyl ether as a solution in Chgl. 

Ninety-seven per cent of the activity was organic, 3% of the activity was 

inorganic, and approximately 3^ of the activity was established as methyl 

iodide. There is a significant difference in the total organic activity 

of 70^ reported by Halpem (73) and in the value of 98% reported by 

Iferayan. However, these two systems are very different. 

In the third of a series of papers Halpem (75) described studies on 

the reactions of 1^52 in liquid mixtures of n-propyl halides and benzene 

or iodobenzene. The I^^^ was produced by the beta decay of Te^^S from 

Te^^^Cl^. Whereas in previous studies Halpem had accomplished analysis 

by fractional distillation, in this study he utilized gas chromatography. 

Because solutions of TeCl^ in alkyl iodides darkened on standing, all 

solutions were prepared with an iodine concentration of 10"^ mole fraction. 

In these scavenged systems the total organic yield varied only slightly 

with an average of 20% of the total activity. In the cases of 0.07M 
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in n-C^H^I + CgHg and 0.07M in n-C^H^I + CgH^I the only 

products found were and However, if C^H^Br or C^H^Cl 

was used instead of C^Hyl, two unidentified peaks were found in addition 

to the two previously mentioned. il32 reacted preferentially with the 

alipatic halide in all cases and the extent of preference depended on the 

composition of the organic mixture, i.e., the mole fraction of the CgHg 

132 Halpern suggested that the reaction of the I with the organic 

media proceeded throu^ an excited intermediate complex, and that the 

interaction leading to the complex was ion-dipole in character- Since 

the dipole moments of n-propyl halides are larger than those of iodo-

benzene and benzene, the prolDability of formation of an intermediate com­

plex should he greater in the case of n-propyl halides than for iodoben-

zene or benzene. This complex would be able to undergo one of three re­

actions : 

(ll32)+ + 

[CGHYX + X+ 

XCgHgl^^^ + H+ 

The probabilities for the occurrence of the last two reactions would in­

crease with the increasing half life of the intermediate complex, since 

the longer the complex remains intact the larger the probability of 

energy (or charge) transfer to surrounding molecules. 

The last reported study involving the chemical consequences of beta 

decay in the tellurium-iodine system in organic media was that of Adloff 
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and Llabador (76) . The phase and temperature dependence for Te^-'^Cl^ in 

benzene and of diphenyltelluride(Te^"^^) -was studied. In the case of 

TeCl^ in benzene a phase dependence was found, while in the second case 

no phase or temperature dependence was found. 

Purpose of Investigation 

The ease of separation of the alkyl and aryl tellurides by gas chroma-

tography and the nuclear characteristics of I make the study of the 

decay of Te^^^ —> in organic solutions desirable. Very little 

research has been done involving the study of the chemical consequences 

of beta decay from an organotelluride in a hydrocarbon solvent, because 

of the difficulties encountered in working with organotellurides, particu­

larly those difficulties caused from the hi^ chemical reactivity and the 

high toxicity of the organotellurides. The only reported study was pre­

liminary in nature. 

The purpose of this investigation was to obtain information con-

131 
ceming the chemical consequences of the beta decay of Te from organo­

tellurides in hydrocarbon solvents in order to add to the present know­

ledge of the behavior of recoil atoms. The data is treated in terms of 

possible reaction mechanisms. 
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EXPERIMENTAL 

Chemicals and îfeterials 

The hydrocarbons used in this research were all obtained from the 

Phillips Petroleum Co. They were all research grade, better than 99.95^ 

purity and were used without further purification. 

The column materials used were : 

1) Diisodecyl phthalate - Monsanto Chemical Co. 

2) SF-96(lOO), silicone fluid - General Electric, Silicone Products 

Division. 

3) Chromosorb P, 45-60 mesh - F & M Scientific. 

The diethyltelluride and di -n-butyltelluride were obtained from City 

Chemical Corporation. Both were purified by gas-liquid chromatography 

after they had been irradiated. 

The chemicals used for the standardization of the columns were either 

purchased from Ifeistman Organic Chemicals, K & K Laboratories, City Chemi­

cal Corporation, or Matheson Coleman and Bell. 

The labeled methyl iodide-131 was purchased from Volk Radiochemical 

Company. It had a radiopurity of 99^ and a specific activity of 16 mc/mM. 

Case A - Results of Beta Decay Following 

Neutron Activation of Prepared Solutions 

Sample preparation 

Solutions of diethyltelluride in n-pentane were prepared in two 

concentrations, O.IM and 0.5M, to be irradiated under various conditions. 

The preparation of these solutions was accomplished by micro-pipetting 

that quantity of diethyltelluride necessary for the desired concentration 
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into a 5 ml volumetric flask and diluting to volume with n-pentane. Thie 

volumetric flask was fitted with a rubber septum in order to arrest evapo­

ration of the solvent and slow oxidation of the diethyltelluride while the 

samples were being prepared. The solution was withdrawn from the flask 

and transferred to the quartz sample bulblets with a syringe having a 

5 in needle. Hie sample was degassed by the standard freeze-thaw de­

gassing procedure and then the bulblet was sealed. 

The quartz sample bulblets consisted of a 9.0 - 9.3 mm diameter bulb-

let blown onto one end of a 2 mm quartz tube, 6.5 cm in length. The other 

end of the tube was sealed to a lO/SO standard taper. The quartz bulb­

lets could then be attached to the vacuum manifold by the standard taper. 

The small diameter of the tube facilitated the sealing process. 

Because the organotellurides are highly toxic as well as very vola­

tile, the entire procedure for the sample preparation was done in a low 

pressure ventilation hood equipped with a plexiglass shield. 

Irradiation 

The quartz bulblets containing the diethyltelluride were sealed 

inside a 3/8 in polyethylene tube in order to reduce the probability of 

breakage during irradiation and to contain the telluride within the poly­

ethylene container should breakage occur. This is shown in Figure 1. 

All samples were irradiated at the Ames Laboratory Research Reactor 

(AIiRR) . The particular irradiation position used in this study, R-3, 

received a flux of 4.2 x 10^^ neutrons/cm^/sec at a power level of 5 

megawatts. 
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ENDS OF POLYETHYLENE 
TUBE CLOSED BY PINCH­
ING WITH PLIERS 
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BULBLET NECK INSERTED 
INTO STYRAFOAM CYLIN­
DRICAL PLUG 

Figure 1. Bulblet packed for iiradiation 
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The irradiations were performed at constant power levels for various 

time intervals (5 min to 25 min) in order to approach conditions of "zero 

dose." These irradiations were conducted at two different power levels, 

4 and 5 megawatts, at a constant concentration of O.IM, and were conducted 

at the two concentrations, 0.1 and 0.5M, at a power level of 4 me^watts. 

Analysis 

Analyses were performed "by the utilization of a radio-gas chromato-

graph. A diagram of the experimental apparatus is shown in Figure 2. The 

bulblet was inserted into the breaker specifically designed for the radio-

gas chromâtograph (Figure 3), and broken. The products, after being 

separated by the column, passed directly throu^ the detection system, a 

3" X 3" Harshaw lial(Tl) side-hole crystal (Figure 4) . 

Better separation of products was obtained by temperature programming 

than by isothermal operation of the chromatograph. Althou#i the hydro­

carbon solvent and the higher boiling products dictated the operating con­

ditions for the analysis of the various solutions, usuaULy the temperature 

programming was begun at 50-60°C and proceeded at a 2' deg/min rate of in­

crease. The maximum temperature depended upon the decay products and the 

column material used. The flow rate most commonly used was 55 ml/min. 

The chromatograph used in this study had previously been used in this 

research group for low temperature studies. The present study necessi­

tated the complete rebuilding of the chromatograph. Dead space was mini­

mized by attaching the front end of the column directly to the breaker and 

by attaching the back end of the column directly to the T.C. cell. The 

copper tubing which had been used previously was replaced with stainless 
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Figure 2. Eadio-gas chromâtograph. 
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Figure 3. Injection port-breaker system 
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Figure 4. Counting cell arrangement 
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steel, so that all the chromatograph parts were either pyrex or stainless 

steel. Auxiliary heaters were added to the chromatograph oven in order to 

reach temperatures in excess of 200°C. Both the T.C. cell and the injec­

tion port-breaker system were enclosed in insulated boxes with separate 

heaters so that their temperature could be independenljly maintained. 

Because of the high toxicity of the organotellurides, a low pressure 

ventilation hood was built above the chromatograph oven. If a leak were 

to occur some-wiiere in the system, the telluride could instantaneously be 

removed by the hood. 

The columns were 7 mm diameter pyrex tubing formed into coils, ap­

proximately 8" in diameter. Diisodecyl phthalate on Chromosorb P and 

silicone oil on Chromosorb P were the column materials in general use. In 

both column materials the resolution times of <the iodides were directly 

related to their boiling points. The TngyTTrmm attainable temperatures were 

150°C for the diisodecyl phthalate column and 250°C for the silicone oil 

column. 

Since it was the chemical consequences of the system Te^^^ > jl31 

that was to be observed, it was necessary to calibrate the single channel 

analyzer used in conjunction with the radio-gas chromatograph for the 

purpose of counting The nuclear decay scheme of is given in 

Figure 5. The single channel analyzer was operated in the differential 

mode with the lower and upper discriminators set so that pulses would be 

*1 x-z 
counted between the energy limits shown in Figure 6. A Ba standard 

source (4,000 cts/min) was counted before every run to ensure that the 

detection system had not changed. If more than a 2$ deviation in the 
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Figure 5. Nuclear decay scheme for I" 
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133 
cotint rate of the standard Ba source was noticed, the counting system 

was recalibrated to the 0.24 Mev - 0.44 Mev window width. 

The flow rate during a run was extremely important since for a given 

activity due to a volatile component the number of counts registered is 

inversely proportional to the flow rate. Thus, a measure of the activity 

of a particular product peak can be taken as 

AjL = Nif (10) 

where is the number of counts recorded for a product peak and f is the 

flow rate. In order to calculate product yields in terms of per cent of 

the total activity, it was necessary to count each sample on a monitor 

counter before the sample was analyzed. The relationship between the 

total counting rate of a sample on the monitor and the measure of the 

total activity. A, which that same sample produces in the side-hole 

Nal(Tl) crystal is given by the calibration factor. That is, the calibra­

tion factor is that number which results in the number A -riien multiplied 

by the monitor count. 

A = FY, (11) 

where F is the calibration factor and Y is activity as recorded by the 

monitor. The yield of a particular product is 

A. fN. 
X 100 = X 100 =  ̂. (12) 

Wolfgang and Rowland (77) were the first to use expressions similar to 

these in conjunction with a flow-proportional counter. 

The calibration factor was obtained by preparing labeled methyl 

iodide-131 in bulblets identical to those used in preparing samples for 
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irradiation, counting the methyl iodide samples on the monitor, and re­

cording the coTonts detected by the side-hole crystal after the methyl 

iodide had passed throu^ the gas chromatograph. The vacuiom manifold 

used to prepare the methyl iodide-131 samples is shown in Figure 7. 

The methyl iodide-131 was obtained as 3 mM samples with an activity 

of 5 mc, sealed inside a pyrex tube, 20 cm long and 0.8 cm in diameter. 

Wîiile one end of the tube was frozen in liquid nitrogen the other end 

was broken off, and 1.5 ml of triply distilled methyl iodide was added as 

carrier. A 10/30 St joint was attached to the open end as shown in 

1 Figure 7. The tube containing the Mel , still frozen in liquid nitro­

gen, was attached at position b, and a bulblet was attached to position a. 

1 "Zl 
With the Mel still frozen stopcock 1 and needle-valves 2 and 3 were 

opened, and the system evacuated. The needle-value at 3 was closed and 

the liquid nitrogen was removed from the Mel^^^. The Mel^^^ was then re-

1 frozen and needle value 3 reopened. After the Mel had been degassed 

three times, stopcock 1 was closed, needle - valves 2 and 3 opened, and the 

liquid nitrogen "was removed from the tube containing the Mel . After 

allowing ample time for the equilibration of the Mel vapor throu^out 

the closed, evacuated system, the bulblet was sealed off at position c. 

Needle-valve 2 was then closed, and a new bulblet was placed onto the 

system at position a. The liquid nitrogen was placed around the tube con-

131 
taining the Mel , and needle valve 2 and stopcock 1 were opened so that 

the system would again be evacuated. Stopcock 1 was closed again and 

needle valve 2 was opened. The liquid nitrogen was again withdrawn, and 

after the Mel^^^ had again been equilibrated the bulblet was sealed off at 

position c. The process was repeated for each sample prepared. 
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Figure 7. Apparatus for the preparation of Mel samples 
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A RIDL model 34-12B 400-channel analyzer was used as a monitor. The 

counting geometry was constant for all samples, the detector being a 

5" X 3" flat Nal(Tl) crystal. 

Total iodine-131 activity in the samples must be known in order to 

calculate product yields, and since the organotellurides used are not en-

1 *2 A 
riched in Te , interfering activities which may be produced during the 

irradiation must be minimized or eliminated. Table 1 lists the tellurium 

isotopes, which are activated by thermal neutron irradiation. 

The table also lists the (n,Y) reaction products and their pertinent 

nuclear properties along with the dau^ter iodine isotopes and their per­

tinent nuclear properties. The only tellurium activities to be produced 

in detectable amounts during a 25 min irradiation should be Te^^^ (9.3 hr), 

Te^^® (67 min), Te^^^ (1.2 da), and Te^^^ (25 min) . The other isotopes 

should not produce interfering quantities of activity because of low per 

cent abundance of the target, small cross section of the target, or long 

half life of the (n^y) product with respect to the irradiation time. Since 

Te^^^ decays to stable and Te^^ decays to 10^ yr there should 

be no interfering iodine activity from either of these. The decay of 

1.2 da Te^^^ to will be discussed in detail later. It is clear that 

only Te^^^ and should remain after a period of four days has elapsed 

from the end of bombardment. This was verified by experiment for a 25 min 

irradiation. For these analyses the activity of the Te^^^ was shown to 

be ~2^ of the total. Wo correction was made since this was within the 

overall experimental error. 

The 400 channel analyzer had to be recalibrated and standardized be­

fore each sample series was counted. Only 200 channels were utilized for 
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Table 1. Nuclear properties of tellurium isotopes and their products®' 

Target (n;Y) Product Decay product 

Isotope 
Per cent 
abundance 

Cross 
section 
(barns) Isotope % 

Radiations 
( Y-rays) Isotope Radiations 

rpel20 0.089 2.0 
0.3 

m 121ni 

Te^l 
150 da 
17 da 

0.082^, 0.212 
0.575, 0.506, 
0.070 

Sbl21 Stable 

Tel22 2.46 1.0 ^gl23m 104 da 0.089^, 0.159^ Tel23 Stable 

Tel24 4.61 2.0 Tel25m 58 da 0.110^, 0.035^ Tel25 Stable 

Tel26 18.71 0.1 
0.9 

m 127lll 
Tel27 

105 da 
9.3 hr 

0.0887^ 
<1^ decay with 
7-emission 

Tel27 
ll27 Stable 

Tel28 31.79 0.017 
0.14 

m 129m 
Tel29 

33 da 
67 min 

0.1063^ 
0.0268, 0.475, 
0.211 

. Tel29 
jl29 1.6 X 10^ yr 

TelSO 34.48 0.03 

0.2 

jgl31m 

TelSl 

1.2 da 

25 min 

__c 

__c 

jl31 
fpgl31 
gsi 

8.02 da 
(19?^) a 

8.02 da 

^Reference 7. 

^Isomeric transition. 

°See Table 8. 

"^Decay scheme shown on page 34. 
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counting and the analyzer vas calibrated so that the 200 channels corre­

sponded to an energy range of 0-0.81 Mev. However, the analyzer was 

operated in the differential mode, and the discriminators were set for the 

limits shown in Figure 6. The gain stabilizers were set for channel 16 

and for the center of the 0.36 Mev peak of I . The center of the 

0.36 Mev peak was always placed in channel 92 and the counts recorded be-

tween channels 64 and 110. A Ba^^^ standard source (157,000 cts/min) was 

counted after each calibration, and the counting rate of the standard 

varied less than + 1% for all experiments. 

Case B - Results of the Beta Decay of Purified 

Organotellurides(Te^^^) in Solution 

Sample preparation 

Diethyltelluride and di-n-butyltelluride samples were prepared for 

irradiation by pipetting the telluride into quartz bulblets, degassing the 

samples by the freeze-thaw method, sealing the bulblets, and packing them 

in a polyethylene container. The bulblets have previously been described, 

and the bulblet ready for irradiation is shown in Figure 1. 

Irradiation 

All samples were irradiated in "rabbit " R-5 at the ALE®. This irra-

13 ? / 
diation position received a flux of 3.5 x 10 neutrons cm /sec at a power 

level of 5 megawatts. A pneumatic tube carried the samples between the 

"hot" laboratory where the solutions were prepared, and the irradiation 

position in the reactor. 

All irradiations were for a time duration of 25 min and were per­

formed at full power. 
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Solution preparation 

After irradiation the organotelluride was separated by gas chromato­

graphy from various products formed by recoil and radiation damage during 

the irradiation. The gas chromatograph used in this procedure was built 

from laboratory spare parts. A Sargent Laboratory Oven (no. 8-63995) was 

used as the chromatograph oven. The detection unit consisted of stainless 

steel conductivity elements obtained from Gow-Mac Instrument Company and 

inserted into a thermo-conductivity cell block, which had been constructed 

by the Ames Laboratory machine shop. The 7 mm pyrex column and the T.C. 

cell were placed in the chromatograph as shown in Figure 8. The tempera­

ture of the column and T.C. cell were maintained at the same temperature 

as the chromatograph oven, which was operated isothermally. The breaker-

injection port system was identical to that shown in Figure 3 and was con­

tained in an insulated box attached to the top of the oven. The output 

from the T.C. cell was registered by a Sargent strip-chart recorder, model 

MR. A bubbler containing mineral oil was used for leak detection in the 

place of a commercial rotameter. 

The chromatograph and the vacuum manifold used for degassing the 

samples were placed in a large walk-in hood in the hot laboratory. A 

smaller hood equipped as a glove box and located directly across the 

laboratory from the walk-in hood was used for the preparation of the solu­

tions and handling of the organotellurides. 

The procedure followed for the preparation of the solutions following 

irradiation of the organotelluride is given below. 
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T.C. FILAMENT 
LEADS 

CARRIER GAS IN 
THERMOMETER 

BREAKER 
INJECTION 
PORT 

FRONT-

ATTACH 
COLLECTOR 

COLUMN TC. CELL 

Figure 8. Prep chromatograpb for purification of or^notellurides 
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Lraiiediately after irradiation the sample v/as transferred from the 

receiver to the small hood, where the q-uartz hulhlet v/a." removed 

from the irradiation capsule. 

The qxiartz "bulblet was inserted into the chroraatograph breaker. 

After the system had been closed off and the bridge power and 

recorder turned on, the bulblet was broken. 

Average time from end of irradiation: 3 min. 

Sample collection was begun about 30 sec after elution of the 

organotelluride began and stopped about 30 sec before elution of 

the telluride ended. Examples of chromatograms for the organo-

tellurides are given in Figures 9 and 10. The fraction of the 

peak collected is indicated. The avemge time for elution was 

6 min for diethyltelluride and 13 min for di-n-butyltelluride. 

The longer time necessary for elution of di-n-butyltelluride was 

probably due to the slow diffusion of the telluride from the 

broken bulblet into the stream of carrier gas. The chromato-

graph was operated at a temperature of 180°C, the highest tem­

perature attainable, while the boiling point of di-n-butyltellu­

ride at 760 mm is well above 200°C. The value obtained from the 

literature is 132-135°C at 99 mm (IS). 

The collector was sealed off and transferred to the small hood. 

The organotelluride was pipetted from the collector into a spe­

cial 5 ml volumetric flask (Figure ll) containing approximately 

2 ml of hydrocarbon solvent. After addition of the organotellu­

ride, the flask was filled to volume with the same hydrocarbon. 

The solution preparation was considered complete at this point. 
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Figure 9. Cîhromatograms of diethyltelluride 

a. Before irradiation 

b. After irradiation 

Operating conditions --

Oven temp : 145°C 

Flow rate; 10 sec/lO ml 

Column; 20^ diisodecylphthalate on Chromosorb P, 
10 ft long, 7 mm diameter 
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Figure 10. Chromatograras of di-n-butyltelluride 

a. Before irradiation 

b. After irradiation 

Operating conditions — 

Oven temp: 180°C 

Flow rate: 8 sec/lO ml 

Column: 20^ silicone oil on Chromosorb P, 10 ft 
long, 7 mm diameter 
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TO 
VACUUM MANIFOLD 

RUBBER SEPTUM 10/30 ST 

.VACUUM 
STOPCOCK 

5 ml _ 
VOLUMETRIC 

Figure 11. Special flask for preparation of solutions 
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The time required to prepare the solution after collecting had 

stopped -was approximately one min. 

5) The flask containing the solution was placed onto the vacuum 

manifold; and the solution was degassed by the freeze-thaw tech­

nique. The time required for the degassing procedure was ap­

proximately 10 min. 

6) After the solution had been degassed, the stopcock on the flask 

was closed and the flask removed from the vacuum manifold, 

wrapped in black tape and allowed to stand for approximately 

5 hr, 12 half lives of the Te^^^. 

7) At this time pyrex bulblets were filled with the solution from 

the flask and the samples were degassed by the freeze-thaw tech­

nique. The special flask was used in order to eliminate oxida­

tion of the organotelluride while this step was being accom­

plished. 

Analysis 

The equipment and procedures used for analysis were the same as those 

previously described. However, in this series of experiments 4.1% of the 

total activity was found to have the same resolution time as the organo­

telluride. In order to prove that this activity was that of radiotellu-

ride and not an organoiodide( possessing the same resolution time, 

the organotelluride fraction was collected after passing throu#i the side-

hole crystal, and a spectrum was recorded. The spectrum is shown in 

131 
Figure 12. It clearly is not that of I and must be due to longer lived 

tellurium isotopes. The spectrum is probably the result of at least three 
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Figure 12. Spectrum of organotelluride fraction 
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tellurium isotopes: Te^^^ (1.2 da), Te^^Sm (^3 da), and Te^^S (67 min, 

resulting from the decay of . Thus the measure of the total ac­

tivity for this set of experiments was not given by Equation 11 j it was 

given by 

A' = 0.959 A (13) 

Only a small fraction of the long lived tellurium activities detected 

in the organotelluride fraction at the time of analysis would have decayed 

before the chromatographic separation following the irradiation of the 

1 telluride, "vdiile nearly one-third of the Te-^"^ would have decayed by that 

time. That is, because of the purification of the telluride following 

irradiation, the specific activity of the in the solution was about 

one-third of that in the first series of experiments, but the specific ac­

tivity of the long lived radiotelluride was approximately the same. 
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RESULTS 

Case A - Results of Beta Decay Following 

Neutron Activation of Prepared Solutions 

The results of the preliminary experiments, in which the solutions 

were irradiated after preparation, are shown in graphic form in Figures 

13-21. These graphs show the effect of dose on the product distribution. 

The Y-flux through the sample during irradiation is uniform; therefore, 

every part of the sample receives the same dose. If the y-flux and the 

sample size are constant for each irradiation at a particular power level 

and irradiation position, the irradiation time can be used as a measure 

of the dose received. For this reason, the yield of each product has 

been plotted versus the irradiation time. 

Treatment of error 

The yields recorded on the graphs are expressed in terms of per cent 

of the total organic activity. Least square analyses were performed for 

all product yields, and the yields at "zero" dose are reported in %.bles 

2-4. The error reported is the standard deviation of-the intercept re­

sulting from the least square analysis. 

Discussion of results 

A larger dose effect resulted at 5 megawatts than at 4 megawatts as 

was expected. This is evidenced by the larger slopes resulting from the 

dose effect at 5 megawatts. However, comparison of Tables 2 and 3 show 

that the yield at zero dose is the same for products at the two power 

levels if other conditions are unchanged. That is, the only difference in 

these two series of experiments was the increased slope at 5 megawatts. 
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Figure 13. Effect of dose on the yield expressed as per cent of the total 
organic activity 
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Figure 14. Effect of dose on the yield expressed as per cent of the total 
organic activity 
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Figure 15. Effect of dose on the yield expressed as per cent of the total 
organic activity 
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Figure 16. Effect of dose on the yield expressed as per cent of the total 
organic activity 
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Figure 17. Effect of dose on the yield expressed as per cent of the total 
organic activity 
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Figure 18. Effect of dose on the yield expressed as per cent of the total 
organic activity 
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Figure 19. Effect of dose on the yield expressed as per cent of the total 
organic activity 
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Figure 20. Effect of dose on the yield expressed as per cent of the total 
organic activity 
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Figure 21. Effect of dose on the yield expressed as per cent of the total 
organic activity 
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Table 2. Product distribution from dose studies I. 0.1 M Te(CpHg)2 in 
n-pentane^ 

Product 
Yield 

iio total organic activity) 
Yield^ 

total activity) 

lodomethane 1.89 + 0.76 1.64 

Vinyl iodide^ 

lodoethane 80.82 + 1.31 70.20 

1-lodopropane 3.08 + 0.36 2.68 

1-Iodobutane 1.52 + 0.37 1.32 

2-lodopentane 4.78 +0.93 4.16 

3-lodopentane 4.26 + 0.17 3.70 

1-lodopentane 4.66 +. 0.35 4.04 

^Irradiation position: R-3 at ALE®. 
Power level: 4 megawatts. 

^Per cent activity in organic phase: 86.89 + 6.14. 

^Poor resolution of peak did not permit recording of data for this 
product from this series of runs. 

Table 3. Product distribution from dose studies II. 0.1 M Te(022^5)2 in 
n-pentane®' 

Product 
Yield 

(% total organic activity) 
Yield^ 

total activity) 

lodomethane 1.79 + 0.60 1.55 

Vinyl iodide 0.97 

6
 

+1 

0.84 

lodoethane 81.03 + 1.25 70.30 

1-lodopropane 3.04 + 0.49 2.64 

1-Iodobutane 0.83 + 0.44 0.72 

2-lodopentane 5.76 + 0.26 5.00 

3-lodopentane - - 4.34 + 0.57 3.77 

1-lodopentane 5.00 +. 0.45 4.34 

^Irradiation position: R-3 at ALSR, 
Power level: 5 me^watts. 

^Per cent activity in organic phase: 86.89 + 6.14. 
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Table 4. Product distribution from dose studies III. 0.5 M TeCCgEc^g in 
n-pentane^ 

Product 
Yield 

total organic activity) 
Yield^ 

(% total activity) 

Iodomethane 2.41 + 0.41 2.09 

Vinyl iodide 0.58 + 0.14 0.50 

lodoethane 82.09 + 1.02 71.30 

1-lodopropane 2.84 + 0.24 2.46 

1-Iodobutane 0.87 ± 0.27 0.76 

2-lodopentane 4.50 + 0.49 3.91 

3-lodopentane 2.65 + 0.56 2.30 

1-lodopentane 4.88 + 0.52 4.23 

^Irradiation position: R-3 at AIKR. 
Power level: 4 megawatts. 

^Per cent activity in organic phase: 86.89 + 6.14. 

Comparison of the results of Tables 3 and 4 show, that with the 

exception of iodomethane and 3-iodopentane, the yield of the various 

products in 0.5 M Te(C2Sg)2 in n-pentane at 4 megawatts is within experi­

mental error of their yields in 0.1 M Te(CgHg)g n-pentane at 4 mega­

watts . 

Several samples of 0.1 M Te(C2%)2 n-pentane solutions were irra­

diated at 5 megawatts for various time intervals in order to determine 

the total organic yield resulting from these irradiations. The value 

found for the per cent activity in the organic phase was 86.89 + 6-14. 

The yield of each product was calculated in tenns of per cent of the 

total activity and is reported in the second column of Tables 2-4. 

Case B - Results of the Beta Decay of Purified 

Organotellurides(Te^^^) in Solution 

The results of these experiments are given in Tables 5 and 6. 
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Table 5. Yields of products resulting from the fragmentation of the organotelluride 

Products 

n-pentane n-hexane 

Solvents 

Cyclopentane Benzene Toluene 

lodomethane 
a 0,90 +_ 0.21 
b 0.91 + 0.12 

0.67 + 0.16 
0.86 + 0.17 

0 .0  
0.38 + 0.04 

0.36 + 0.14 0.0 
0 .0  0 .0  

Vinyl iodide 
a 1.05 +. 0.09 
b 0.41 + 0.09 

0.48 ±. 0.17 
0.52 + 0.10 

0.71 + 0.22 
0.49 + 0.11 

0 . 8 2  + 0 . 2 6  
0.0  

0.82 + 0.20 

lodoethane 
a 88.34 + 2.83 
b 1.58 + 0.24 

94.67 + 0.12 
1.28 + 0.32 

91.43 + 1.18 
1.83 + 0.36 

91.67 + 3.29 
0.52 + 0.22 

82.21 + 2.50 
1.01 + 0.42 

1-Iodopropane 
a 0.76 + 0.11 
b 0.60 + 0.11 

0.65 + 0.32 0.0 
0.69 + 0.06 0.0 

0.0 
0 .0  

0.0 
0.0 

1-Iodobutane 
a 0.88 + 0.21 
b 69.95 + 2.18 

0.62 + 0,40 
79.47 + 2.69 

0.57 + 0.14 
78.05 + 2.17 

1.38 + 0.10 
64.09 + 2.61 

1.51 t 0.31 
69.00 + 2.88 

2-Iodobutane 
a 0.0 
b 1.46 + 0.14 

0.0  
2.08 + 0.16 

0 .0  
2.10 + 0.16 

0 . 0  
0.89 + 0.30 

0.0 

^Diethyltelluride. 

^Di-n-butyltelluride. 
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Table 6. Yields of products from reactions of I* with solvent molecules 

Solvent Product Organotelluride 
Diethyltelluride Di -n-butyltelluride 

n-pentane 
2-Iodopentane 1.87 + 0.32 1.84 + 0.32 
3-lodopentane 0.98 + 0.21 0.81 + 0.06 
1-lodopentane 1.83 + 0.39 1.54 + 0.23 

n-hexane 
2- and 3-Iodohexane 3.34 + 0.16 3.36 + 0.41 
1-Iodohexane 1.83 + 0.59 2.67 + 0.62 

Cyclopentane 
1-lodopentane 1.39 + 0.30 2.05 + 0.33 
lodocyclopentane 4.02 + 0.38 3.80 + 0.34 

Benzene 
lodobenzene 1.87 + 0.15 1.76 + 0.27 

Toluene 
o- and p-Iodotoluene 1.40 + 0.13 1.51 + 0.32 

Treatment of error 

Each number reported in Table 5 is the average of three to seven 

values. The error reported is the standard deviation of a single 

measurement. ^ 

Decay of Te before the solution was prepared . 

An equation has been derived for calculating the fraction of Te^^^ 

decays occurring before solution, i.e., before each organotelluride mole-

cule is surrounded by hydrocarbon molecules. It is assumed that no I 

containing species are present as elution of the organotelluride begins. 

A function is assumed which closely approximates the elution curve of the 

telluride. 
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Consider the following elution curve : 

t^ tg 

If f(t) describes the curve, the fraction of the organotelluride eluted 

given time interval is given by -• in a 

f(t) dt 

= AA (13) 

f(t) dt 

The number of radioactive organotelluride molecules at any particvilar 

time, tj, is 

N = (1 - e'^tj 
XM 

(14) 

where 

tg = irradiation time 

V = volume of the organotelluride in ml 

P = density of the organotelluride 

MQ = Avogadro's nimber 

M = molecular weight of the organotelluride 

(j) = neutron flux 

section of the reaction Te^^®(n,Y)Te^^^ a = cross 

X = decay constant for Te 131 
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For any particular elution fraction the number of telluride molecules 

undergoing decay between tj and Tq is 

PAj (1 - e-^to) - e-^^o] (l5) 

where 

TQ = time period between the end of irradiation and the time when 

the solution was prepared, and 

P = 
"~TM 

(jOierefore, the fraction of organotelluride decaying between elution and 

the solution preparation is given by: 

P(l-e-^to) [A^(e-^-tl _e-^^o) + AgCe"^"^ -e'^^o) . . .J 
F = 

or 

P(l-e"^'^o)e"^^o 

5 A,(e-ktj_e-k%o) 
F = _ j=l J 

(16) 

An approximation to the average elution curve for di ethyltelluride 

is sketched below: 

If the total area is normalized to 1 and if Tq is 16 min, the fraction of 

diethyltelluride molecules decaying before solution is calculated from 

Equation 16 to be 12.5^. 
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!Ihe average elution curve for di-n-butyltelluride is approximated 

below: 

16 17 12 13 14 15 18 19 20 21 22 23 24 

If the total area is normalized to 1 and if TQ is 25 min, the fraction 

of di-n-butyltelliiride molecules decaying before the solution has been 

prepared is calculated from Equation 16 to be 14.8^. 

Scavenger studies 

Scavenger studies were attempted; however, difficulties were en­

countered. The scavenger most commonly used because of its desirable 

properties, such as low activation energy for its reaction with radicals, 

is Ig. Upon the addition of to solutions of dialkyltellurides a 

flocculent precipitate, BgTelg, is formed thereby decreasing the Ig 

concentration. It was not certain that the scavenging action of the Ig 

had not been hindered. The use of 2,2-diphenyl-l-picrylhydrazyl, DPPH, 

as a scavenger was also tried. However, DPEH is a bulky, stable free 

radical and its scavenging action is not clearly understood ( 78) . In 

solutions of DPPH + diethyltelluride in n-pentane and in n-hexane, the 

yields of all products were within experimental error of the same product 

products when no scavenger was present. 
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Discussion of results 

The data for the results of the beta decay of di-n-butyltelluride in 

toluene are incomplete in that l) the value for 1-iodobutane may be doubt­

ful and 2) no value is reported for 2-iodobutane. 

The yields reported are all in terms of per cent of the total 

activity. 

The activity in most experiments was on the order of 100-500 counts 

in the peaks of those products produced in small yields. The separations 

had to be particularly good in order to achieve results with acceptable 

standard deviations. The large standard deviations were probably due to 

1 •ZT 
the low activity of the samples. The number of I atoms present at the 

time of analysis was calculated to be 4.88 x 10^^. The following assump­

tions were made: l) the period of irradiation is 20 min, 2) only 60^ of 

131 
the Te produced is in the form of the dialkyltelluride in question due 

to (n,Y) recoil effects, 3) 90% of the dialkyltelluride-131 is recovered 

from the chromatographic separation, 4) the purified dialkyltelluride 

sample is diluted to 5 ml and 0.3 ml samples of this solution are pre­

pared for analysis, and 5) analysis is performed four days after irradia­

tion ceases. 



www.manaraa.com

71 

DISCUSSION 

Effect of Neutron Activation 

on Results 

In studying the effects of beta decay in these systems it is impor­

tant to know that the products observed have been produced by mechanisms 

initiated by beta decay from the particular organotelluride-131 in ques­

tion. If the system is clouded by (n,Y) recoil effects or radiation 

damage, it becomes quite complex. Related to this subject is a study by 

Halpem (73), in which he compared the results of the beta decay of 

Te^^^Cl^ and Te^^^Cl^ in toluene. He prepared the Te^^^Cl^ from metallic 

tellurium(Te(78 hr half life) and dissolved it in toluene. The 

short half life (25 min) of Te^^^ did not permit the preparation of 

Te^^^Cl^ before dissolving in toluene; therefore he had to irradiate a 

toluene solution in which TeCl^ had previously been dissolved. In the 

comparison of the decay of the two isotopes the methods by which the 

solutions were prepared must be considered. It cannot be assumed that 

all of the Te^^^ formed is in the form of Te^^^Cl^ due to recoil effects 

from the Te^^'^(n,Y)Te^^^ reaction and radiation effects from the reactor 

radiation field. In an earlier study Halpem ( 71) found that the cova-

lent bond, in the case of dibenzyltelluride( Te^^^), always breaks in the 

> I^^^ transformation. Hence he suggested that bonds will break 

•) •2-1 
in TeCl^ as a result of the beta decay, freeing the I atom and ne­

gating any effect by the Te^^'^(n,y)Te^^^ reaction. He also placed a solu-

132 
tion of Te Cl^ in toluene in the reactor radiation field for 20 min, 

and no effect was noticed on the product distribution. Thus Halpem 
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reasoned that the activation and radiation effects were negligible, and 

that the yields were a direct result of the chemical consequences of the 

beta decay of Te^^^Cl^. 

First, it cannot be assumed that because a covalent bond breaks as 

a result of the beta decay of a particular isotope in one compound, it 

ifill do so in other compounds (50,51,52,53,55) . Bond rupture depends on 

many factors, such as structure, bond distance, and bond energy. Sec­

ondly, placing (half life 78 hr) in a radiation field for 20 min 

is not going to have the same effect on product yields as placing Te 

(half life 25 min) in a radiation field for 20 min. In the case of 

Te^^^Cl^ nearly one-half of the present at the time of the analysis 

was born in the radiation field of the reactor, whereas in the case of 

Te^52 only a very small fraction of the atoms would undergo decay 

in the 20 min irradiation period. 

In preliminary experiments solutions of diethyltelluride in n-pentane 

were prepared and irradiated as discussed in the experimental section. 

Figures 13, 14, 16, 17, 19, and 20 show the dose effect at two different 

power levels (or two different radiation field intensities) on the product 

distribution of 0.1 M Te(C2Sg)2 in n-pentane. The radicals surrounding 

the Te^^^(C2%)2 ^.t the time of decay and resulting from the radiation 

field apparently influence the product distribution. Some products are 

affected to a larger extent than are others, which is probably a result 

of a higher G value for the production of some radical precursors. It is 

highly probable that a radiation effect was also experienced by the 

Te^^^Cl^ in toluene solution. 
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In order to determine if there is an effect resulting from the 

Te^^^(n/Y)Te^^^ reaction, the "zero" dose product distribution resulting 

from the irradiation of a solution of diethyltelluride in n-pentane (n,Y 

+ beta decay processes) can be compared to that of a solution of diethyl­

telluride -131 in n-pentane (beta decay only) . This is done in liable 7. 

There are several large differences which may be attributed in all or 

part to the effect of the Te^^'^(n,Y)Te^^^ reaction. 

1) The yield of iodoethane is 18% less in the solution irradiated 

to produce the Te^^^. 

2) The yields of 2-, 3-, and 1-iodopentane are 3.13%, 2.79%, and 

2.51% higher in the solutions irradiated to produce the Te^^l. 

3) The total organic yield is ~10% less in the solutions irradiated 

to produce the Te^^^. 

Table 7. Te^^°(n,Y)Te^^^ effect 

Product 
Yield®-

(% total activity) 
Yield^ 

(% total activity) 

lodomethane 1.55 0.90 

Vinyl iodide 0.84 1.05 

Iodoethane 70.30 88.34 

1-lodopropane 2.64 0.76 

1-Iodobutane 0.72 0.88 

2-lodopentane 5.00 1.87 

3-Iodopentane 3.77 0.98 

1-lodopentane 4.34 1.83 

^Irradiation of solution of diethyltelluride in n-pentane. Data are 
those of Table 3, since the product distribution in Table 2 is within 
experimental error of that in %,ble 3. 

^Diethyltelluride(Te^^^) separated after irradiation and dissolved 
in n-pentane. 
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As a result of the (n,Y) recoil both C-Te bonds may rupture, and the 

Te^^^ may stabilize in solution as a neutral uncombined species. In view 

of the fact that in case B such a large percentage of the beta decays 

result in an unexcited as evidenced by the ̂ 90^ yield of ethyl 

iodide-131, it is possible that the decay of a large fraction of a neu­

tral Te^^^ species in solution would result in a thermalized atom. 

Such an atom would in the absence of radicals react with another 

iodine atom yielding molecular iodine, thereby decreasing the organic 

yield in case A. The fact that the total organic yield was 10^ less in 

case A may also be due to the reaction of products resulting from the 

beta decay of Te^^l during the period of irradiation with either the ra­

diation field itself or with radiation products to produce high boiling 

polymers. These high boiling products would not be detected since they 

would remain behind on the chromatogra^Èiic column during an analysis. 

In a hi^ percentage of the Te^^^( n,Y ) reactions one or both of 

the C-Te bonds are ruptured. The recoil atom can recombine to form 

diethyltelluride or it can react with the pentane solvent to form any of 

a number of alkyltellurides, e.g., diamyltelluride(Te^^^) or ethylamyl-

telluride(Te^^^) . Beta decay from diamyltelluride or ethylamyltelluride 

would most likely result in an iodopentane product. The higher yields 

of iodopentanes may be due to such a phenomenon. 

The yield of iodoethane is 18^ less, whereas the yields of the iodo­

pentanes have increased '"-8%. Probably &jo of the decrease in the iodo­

ethane yield is caused by the process leading to the increase in the 

iodopentane yields, as discussed. The other 10^ reduction in the iodo­

ethane yield is equal to the decrease in the total organic yield. 
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It is highly probable that an (n^y) recoil effect was also expe-

131 rienced by the Te CI4 in toluene solution. Hence it appears Halpern's 

comparison of the chemical reactivity of to that of was invalid 

because of ihe applied experimental conditions. 

Nuclear Decay Properties 

As previously mentioned both Te^^^ and Te^^^^ decay to How­

ever, 81% of decays by beta emission to while the other 19$ 

proceed by isomeric transition to which decays to Calcula-

131 tions show that 4 days after irradiation the I activity resulting from 

the decay of 1.2 da Te^^^ produced during the 25 min irradiation is 

8.38 X 10^ dps, while that resulting from 25 min Te^^^® is 3.99 x 10^ dps. 

Thus 21^0 of the observed products result from the decay of Te^^^. 

The radiations accompanying the decay of Te^^^S and Te^^^ are 

listed in Table 8. If the per cent of a transition internally converted 

is known, it is also listed. 

Excitation due to recoil 

Only part of the recoil energy is converted to internal energy as 

approximated by Equation 7. It was previously calculated for the 2.4 Mev 

1 •Z-] 1 
beta of Te that E^ = 4.9 ev if the recoil atom, I , were a con­

stituent of ethyl iodide, and = 8.2 ev if the recoil atom were a con­

stituent of butyl iodide. However, these are maximum values for Ej_ and 

the average value is approximately one-half of the maximum value (55) . 

Since the C-I bond energy is ~2 ev there should be sufficient energy 

present due to recoil in a good number of the transitions to rupture the 

bond. In a diatomic molecule the bond must rupture in the time of one 
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Table 8. Nuclear properties of the Te 131m _ ijgl31g system 

Fraction 
Decaying 

Isotope Energies Abundance Energies Abundance by I.e. 
(Mev) (Mev) (96) 

2.14 60 0.145 80 20.6®" 

(25 min) 1.68 25 0.454 20 

1.15 10 1.13 10 

1.36 5 0.60 5 

0.92 5 

0.985 - — 

jgl31m 0.420 43 0.1817b 19 100 

(1.2 da) 0.570 31 0.780 80 

2.457 3.8 0.840 40 

0.215 3.6 1.140 25 

1.220 17 

0.335 16 

0.100 8 

0.200 8 

1.080 5 

0.920 5 

0.080 4 

2.000 • 4 

1.620 3 

0.240 3 

1.920 2 

2.240 0.6 — — — 

^Reference 7 9. 

^Isomeric transition. 
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vibration if there is sufficient energy; however, in a polyatomic mole­

cule a concentration of vibrational energy in the appropriate mode is 

necessary before dissociation can occur. 

It is also possible for Y-rays emitted in cascade following beta 

emission to impart their full recoil energy to the dau^iter nucleus, 

rather than vectorially add their recoil momenta, if the half lives of 

the Y-rays are long compared to the time for a molecular vibration, 

10"^^ sec. 

In solutions of diethyltelluride(Te^^^) the yield of ethyl iodide 

was ~90^ of the total activity in each of the five solutions studied, 

while in solutions of di-n-butyltelluride( Te^^^) the yield of n-butyl 

iodide was ~70-79^. The excitation phenomena, such as the shaking ef­

fect, internal conversion, and recoil of the emitted beta particles, are 

1 "̂ 1 the same whether Te decays from diethyltelluride or di-n-butyltellu-

ride. Since the C-I bond energies in ethyl iodide and in n-butyl iodide 

are within a few Kcal of each other ( 80), the increased bond rupture in 

case of n-butyl iodide must be due to the increase in recoil energy con­

verted into internal energy. Carlson and White (53,55) experienced a 

131 131 
similar phenomenon in studies on CH3I and C2H5I by mass spectro-

metric analyses. They found an abundance of 69.4^ for CSgXe''" and 1.4^ 

for CgHgXe'*'. 

Excitation due to internal conversion 

It has been shown that internal conversion, the release of an orbital 

electron rather than emission of a gamma ray, in an atom lAiich is a con­

stituent of a molecule results in the rapid redistribution of the charge 
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throughout the molecule, thereby producing multiple coulombic repulsions 

(8l) . This internal charge transfer is an extremely rapid process leading 

to extensive molecular breakdown. The 0.145 Mev gamma is the only Y-ray 

in the decay of Te^^^® for which an internal conversion coefficient has 

been reported; internal conversion occurs in 20.6^ of transitions. Since 

79'yj of the 1^31 atoms present at the time of analysis are formed from the 

decay of 13.1% have undergone internal conversion due to the 0.145 

Mev transition. Of the atoms present at the time of analysis 4% have 

been formed as a result of the decay of Te^^^ to Te^^^® by isomeric 

transition, the Te^^^® in turn decaying by beta emission to It is 

difficult to surmise the result of such a transition. 

If the bond were ruptured due to multicentered coulombic repulsions, 

the result would be an iodine ion possessing a hi^ charge. It is almost 

certain the iodine ion will not react while its charge is >1. Within a 

few collisional interactions the charge of the iodine ion will be reduced 

to at least +1. With the exception of n-pentane and cyclopentane, the 

ionization potential of each solvent studied is lower than that of an 

iodine atom, and thus charge transfer will probably occur producing a neu­

tral iodine atom. If the I"^ ion should be electronically excited, suffi­

cient energy is available even in the lowest excited state (^P^, 0.800 ev) 

( 82) , so that charge transfer would likely occur in all the solvents 

studied. Any excess energy would be absorbed by the solvent molecule, 

•vâiich could result in further fragmentation. The reactions would then be 

those of an iodine radical in solution. 
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Excitation due to the shaking phenomenon 

Bond rupture can also occur as a result of the shaking effect. If 

the beta emission is adiabatic, the beta particle removes all of the 

excess excitation energy and the electronic cloud contracts about the new 

nucleus to form an ion in its ground electronic state. If, however, the 

transition is nonadiabatic, excitation energy is available and the result 

is a Frank-Condon transition to an electronically excited state. If the 

transition is to a repulsive state or to a vibrational level above the 

dissociation limit of an excited bound state, dissociation results with 

the excess energy being distributed as translational energy of the frag­

ments. The transition may also occur to an excited bound state which 

may undergo any of the many available routes of de-excitation. The most 

probable mode of electronic de-excitation, if predissociation does not 

occur, is collisional deactivation. Half lives for nonradiative 

processes, such as internal conversion, inter-system crossing, etc., are 

substantially longer than the time of a collisional process in the liquid 

phase, 10"^^-10"^^ sec. 

In the beta decay studies by Wexler (50,51,52) and Carlson and White 

(53,55) a large number of different fragments were observed. Their 

studies were all performed in a mass spectrometer with samples necessarily 

at very low pressures, on the order of 10~® mm. Collisional times at this 

pressure are on the order of 10"^ sec, and if a molecule survives bond 

rupture from a-yailahle recoil energy due to fast redistribution of vibra­

tional energy, the electronic energy may be converted to vibrational 

energy of a lower electronic level by a nonradiative transition. This 

vibrational energy may then be distributed throu^out the whole molecule. 
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Molecules as simple as ethane have an extremely large nimber of electronic 

levels J spaced only a few millivolts apart, vhich facilitate nonradiative 

transitions. This vibrational energy converted from electronic excitation 

is available for fragmentation. 

In contrast to the large variety of fragments observed by Wexler and 

Carlson, only a small number of products were observed in this study. The 

fact that the yield of ethyl iodide is ~90^ in the case of diethyltellu-

ride(Te^^^) solutions, means that either: 

1) The largest part of transitions are to the bound ground state 

and the vibrational energy resulting from the recoil is dis­

tributed about the vibrational modes of the molecule such that 

bond rupture does not occur, 

2) The excited electronic levels reached are bound and are colli-

sionally de-excited so that bond ruptxare does not occur, or 

3) A recombination process occurs to produce CgHgl if bond rupture 

has resulted from the shaking effect. 

Reaction Mechanisms 

Rupture of the newly formed C-I bond out of the remains of two C-Te 

bonds is evident in only about 10% of the beta transformations. However, 

the reactions of these recoil atoms are quite interesting. 

It is suggested that these products (other than the stable dau^ter 

molecule) resulted from ; 

1) The reaction of an iodine atom after internal conversion with 

radicals or molecular-ions. These could result from either the 
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coulombic decomposition of the tellurite molecule or from the 

fragmentation of the solvent molecule participating in the charge 

transfer, or 

2) The reaction of an iodine atom, freed by the shaking effect, with 

radicals resulting from the decomposition of the hydrocarbon 

fragment of the organotelluride, or 

3) Ihe reaction of an iodine atom with a hydrocarbon solvent 

molecule. 

It may also be possible for a product to result from the rupture of a bond 

other than the C-I bond, i.e., C-C or C-H. However, the C-I bond is much 

weaker than either the C-C or C-H bond. There is not sufficient evidence 

from this study to pin down whether the fragmentation products resulted 

from 1) or 2), but it is clear which products resulted from the reaction 

of the atom with the solvent. 

Consider the case in which internal conversion does not occur. The 

initial result of the beta decay of Te from a dialkyltelluride is an 

intermediate complex, which upon breakup yields an alkyl iodide molecule 

and a hydrocarbon fragment. Because of the change in atomic number the 

system lacks one electron for neutrality. The resulting positive charge 

is accepted by the hydrocarbon fragment, because the ionization potential 

of the hydrocarbon fragment is lower than that of the alkyl iodides. ( See 

Appendix A.) 

Example : 

(17) 

^2^5 2 5 

(IP: 8.72 ev) (IP: 9.47 ev) 



www.manaraa.com

If the "beta emission is nonadiabatic, excitation results, and the 

may dissociate to CgHg* + • I* by one of many processes. In order for the 

hydrocarbon fragment of the dau^ter molecule to decompose further the 

C-I bond must survive long enou^ for electronic cooling and the redistri­

bution of the resulting vibrational energy throughout the daughter mole­

cule. 

The most feasible reaction mechanisms leading to the products in the 

cases of both studies, diethyltelluride and di-n-butyltelluride, are listed 

in Figures 23 and 24. These mechanisms are based upon reactions initiated 

by excitation due to the shaking effect. The original hydrocarbon solvent 

is the precursor of the other fragments. 

It is interesting to note in Table 5 that in the case of beta decay 

from both diethyltelluride and di-n-butyltelluride the yield for a particu­

lar product tends to be approximately constant for the two aliphatic s and 

cyclopentane but different for the two aromatic s studied. In studies on 

aliphatic-aromatic mixtures radiation products have been explained on the 

basis that the aromatic is an "energy sink" (83,84). That is, there is a 

hi^ probability of energy transfer upon a collisional interaction from 

the aliphatic to the aromatic molecule. 

Something may be learned about the feasibility of these mechanisms 

by calculating the minimum excitation energy that must be present in the 

initial daughter molecule and comparing that value with product yields. 

In order to calculate the minimum initial excitation energy of the daugh­

ter molecule complete randomization of the excess internal energy in each 

radical or ion in the chain of decompositions must be assumed. The frac­

tion of the excess internal energy found in a fragment is (31^-6)/(3K3_-6), 
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where N-j_ is the number of atoms in the decomposing radical or ion and Ng 

is the number in the product fragment. Consider as an example the fol­

lowing fragmentation pattern: 

6 En 
) Ag + Ag 

A g  — A 3  +  A 3  ( I 8 )  

AH, 
A3 > A^ + A^ 

If is the internal energy aquired by the fragment and is the excess 

internal energy of fragmentation over the for fragmentation, 

= AH^ + S-^ } (19) 

Eg - AHg = Eg ) (20) 

Eg - AH3 = E3* , (21) 

(3%-6) 

(3%. -6) 

(5%. -6) 

(SNg--6) 

(3%. -6) 

(22) 

= Eg , (23) 

E,' = E, . (24) 

By working backward from Equation 24 and applying the necessary algebra 

the minimum excitation energy A^ must have in order for the fragment A^ 

to be produced, assuming Equation 18 is the correct mechanism, is given 

hy 
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AHp + (SKg-e) 
(3N,-6) ^ 

(25) 

3" __ 

This expression, or ones similarly derived for the appropriate cases, 

will be applied in the following discussions of diethyl- and di-n-butyl-

tellaaride. 

Diethyltelluride 

It is suggested that the products iodomethane, vinyl iodide, iodo-

ethane (in part), 1-iodopropane, and 1-iodobutane result from the reaction 

of the freed recoil atom with a fragment resulting from the decom­

position of the dau^ter molecule. The proposed mechanism leading to the 

product spectrum resulting from the beta decay of diethyltelluride in 

liquid solution is given in Figure 23. 

The energy necessary to break the C-I bond in ethyl iodide is 53 Kcal 

(so). The overall process leading to after the initial rupture of 

the C-I bond in ethyl iodide, is exoergic. This mechanism (l. Figure 23) 

assumes that the CgHg"*" molecular-ion resulting from the decomposition of 

the beta decay intermediate complex exists long enou^ for reaction with 

the ethyl radical. Since the ionization potential for the ethyl radical 

(8.72 ev) is lower than that for any of the solvents examined, it is 

likely this assumption is valid. If the ionization potential of the sol­

vent is less than that of C^Sgl (9.32 ev), C^Hgl will be stabilized; 

otherwise the C^Hgl^ will decompose. Evidence that this mechanism may be 

valid is given in Table 5. The ionization potentials for n-pentane, 

n-hexane, and cyclopentane (10.55, 9.59, and 11.1 ev) are hi^er than 

that for iodobutane, whereas the ionization potentials for benzene and 
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%+ + 

53 Kcal 

i\H5 «-V- I* + CgHg > I" + solvent molecule 

-31 KC8.1 

CgHg' + OgHg'*' 

98 Kcal 

' CgHg ^ • CHg • + CHg ' 

II, 

•CHg- + 'I fCHr 

I^CHg" + -CoH 2"5 C3H7I 

C.H 4"10 

III 

cHj- + -r 
1 
.* 

57 Kcal IV 

• CgH^ —^ 

I* + "CgHg-^ CgHgl* 

cH^r 

+ -I .* 

12.6 Kcal 
> C^Hgl*- + H. 

C^Hgl^ + A A+ + C^Hgl* 

Figure 23. Reaction mechanisms for products resulting from reaction of the iodine radical 
with fragments of the original diethyltelluride molecule 
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toluene (9.21 and 8.82 ev) are lower. Approximately 0.70"j, is probably 

formed by this mechanism in the benzene and toluene solutions. Approxi­

mately 0.70% is formed by some other process ; possibly initiated by in­

ternal conversion. 

The ethyl radical can fragment to yield a methylene and a methyl 

radical. These two radicals compete for the iodine atom, the result being 

l-iodopropane in the former case ( II, Figure 23) or iodomethane ( III) in 

the latter. The yields of both iodomethane = 170.6 Kcal/mole) and 

l-iodopropane = 170.6 Kcal/mole) are~0.70^ in the aliphatic solvents 

and zero in cyclopentane, benzene, and toluene. Energy transfer appar­

ently occurs from the CgSg* to the aromatic solvent so that the ethyl 

radical either reacts with the molecule-ion leading to a 1-iodobu-

tane molecule or with a solvent molecule. In the latter case the product 

would be undetected. 

Figure 23 also shows a mechanism for the formation of vinyl iodide 

(IV) = 121.6 Kcal/mole) . It is interesting to note that the yield of 

vinyl iodide resulting from the beta decay of diethyltelluride is approxi­

mately constant in all five solvents, while the yields of iodomethane and 

l-iodopropane = 170.6 Kcal/mole for both) vanish in cyclopentane, 

benzene, and toluene. These results suggest one mechanism for each of 

these products. 

131 If the recoil I atom survives the bond rupture with enou^i trans-

lational energy to break out of its "cage, " it finds itself surrounded by 

solvent molecules. Studies have shown that iodine atoms will not abstract 

hydrogen from organic molecules ( 85), "but they will displace hydrogen from 

organic molecules (86). Hydrogen displacement reactions are proposed for 
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the reactions that lead to the products listed in Table 6. These reac­

tions and their estimated AH^ are given in Table 9, 

Table 9. Solvent reactions 

AH/ 

Solvent Reaction (Kcal/mole) 

îî-pentane 
I- + —> 1-C5H3_II + H- • 45.4 

—> 2-%LI + H-

—> 3-C5H11I + H-

H-hexane 
I- + •^6^14 —> l-CgHijI + H- 45.5 

—> H-

—> 3-CgH2_3L + H-

Cyclopentane 
I- + ^5^10 —> C5H9I + H- 39.3 

Benzene 
I- + ^6^6 C6ÏÏ5I + H- 38.0 

Toluene 
I- + C7H8 —> O-CyHyl 38.6 

p-CyHyl 

^See Appendix B. 

These values for probably are in error because of the method of 

estimation of heats of formation. If they were to be considered correct 

for a moment, however, and compared with the yields of products in 
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question, one could conclude information (relative) about activation 

energies for the hydrogen displacement reactions. It is also possible 

that intermolecular energy transfer has occurred between the I atom 

and the aromatic solvents, thereby decreasing the number of solvent reac­

tions in the aromatic solutions. The total yield of products resulting 

from solvent reactions is ~5.0^ in the tvo aliphatic solvents and cyclo-

pentane but decreases to ~1.6^ in the aromatic solvents. (See Table 6.) 

Iodine-131 atoms that have become thermalized and break free from 

their cage are relatively stable and in the absence of radicals only re­

act with other iodine atoms to yield (85) . 

Di-n -butylt elluride 

!Zhe products iodomethane, vinyl iodide, iodoethane, 1-iodopropane, 

2-iodobutane, and 1-iodobutane (in part), are suggested to result from 

1 •zn 
the reaction of the I atom with a fragment resulting from the decompo­

sition of the dau^ter molecule. The proposed mechanism leading to the 

product spectrum resulting from the beta decay of di-n-butyltelluride in 

liquid solution is given in Figure 24. 

The yields of iodomethane (l^ = 151 Kcal/mole) and 1-iodopropane 

(E^ = 149 Kcal/mole) were ~0.90fo and 0.70% in both aliphatic solvents 

studied. The above I^'s were calculated assuming mechanisms VII and I. 

The yields of both vanish in benzene and toluene solvents as expected, 

but iodomethane in cyclopentane has decreased from 0.90% to 0.40^ and 

1-iodopropane did not exist as a product in cyclopentane. From the other 

product distributions in the solvents studied one would not expect 
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04H9+ + 04H9I* 

2-%i* a-c^Hg. 

49 Kcal /" 

<<"• migration) ^ j* _ 

~—> I* + solvent molecule 

IX * 
n-C^Hgl 

91.3 Kcal 
1 \ 

90.4 Kcal 
r H H 

93.5 Kcal 
V 

C^Hg- > C3H7. + -CHg. C^Hg • ) CgHg ' + »C-C« 
H H 

C3H7. + -I* > C3H7I* 

VII 
V 

C^Hg' > CHj- + -CgHg-

CHg" + -I* > CH3I* 

II 57 Kcal III 

CgHg- + «2 

IV 

CgH^. + .1 
.* * 

98 Kcal 

CgHj- + I* > CgHjI* •li (H. migration^ J,J j. 
6 H 6 ' 

99 
H-Ç-C- + "CgHs ^a-C^Hg. 
H ' • 

g-C^Hg. + -I* ^e-C^Hgl* 

CgHg ' ^ 'CHg' + CHj" 

oHg' + -r 

c%' + -I 

I*CHg. 

.* 

CH3I 

VI 

* 

I*CH2' + "CgHg > C3H7I* 

Figure 24. Reaction mechanisms for products resulting from reaction of the iodine radical with frag­
ments of the original di-n-butyltelluride molecule. 
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cyclopentane to be an energy acceptor as are benzene and toluene; there­

fore, two mechanisms may be suggested. 

The yield of vinyl iodide was found to be ̂ 0.45% in the two ali-

phatics and in cyclopentane and to vanish in benzene and toluene. This 

would be consistent with mechanism II for which = 284 Kcal/mole. 

The decrease in the yields of iodoethane and 2-iodobutane in the 

aromatic solvents suggests that ~15^ of these products are formed via 

mechanisms IV and III, respectively. = 148 Kcal/mole for both mecha­

nisms. However, the fact that neither vanishes in the aromatic solvents 

means that there must be another mechanism resulting in their production. 

2-iodobutane may also be formed by mechanism VIII. 

It is improbable that there are mechanisms requiring hi^er Ep's 

leading to these products which contribute to their yields, unless they 

are kinetically more desirable. Mechanisms V and VI for the production 

of 1 -iodopropane and iodomethane are offered as examples of possible 

mechanisms requiring larger i^'s (226 Kcal/mole) than the mechanisms that 

were discussed. 

is the minimum energy necessary for a product to result via a par­

ticular mechanism. That is, it is the minimum energy that must be avail­

able in the dau^ter molecule resulting from the beta decay to produce 

the product. There may also be an activation energy in some of the rate 

detennining steps of the mechanism. In comparing the product yields and 

I^'s for both the beta decay of diethyltelluride and di-n-butyltelluride 

it was observed that the yields of the products proceeding by mechanisms 



www.manaraa.com

91 

for which £^$>140 Kcal/mole are quenched in the aromatic solvents, while 

those proceeding by mechanisms for which Erp^C125 Kcal/mole are not in­

fluenced. 

The yields of the products resulting from hydrogen abstration reac­

tions resulting from the beta decay of di-n-butyltelluride in all the 

solvents studied were within experimental error of those resulting from 

the beta decay of diethyltelluride and were discussed in the previous 

section. 

The mechanisms given in Tables 23 and 24 and leading to observed 

products must be initiated by excitation energy resulting from a combina­

tion of recoil and the shaking effect (see Equation 17). These mechanisms 

explain the results obtained very well. However, there are a few anoma­

lies, those being the products iodomethane and 1-iodopropane resulting 

from the decay of both diethyltelluride(Te^^^) and di-n-butyltellu-

ride(Te^31) the""solvent cyclopentane. Cyclopentane has an ionization 

potential larger than the iodine atom, which may in some way be the cause 

of these anomalies. It is also possible that these anomalies are the 

result of internal conversion processes, which is not well understood 

beyond the fact that "explosion" of the molecule occurs. It is difficult 

to say that internal conversion may not be the direct cause of many of the 

products observed. 
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CONCLUSIONS 

In solutions of diethyltelluride the ethyl iodide yield \ra.z ~30'̂ , 

while in those of di-n-butyltelluride the 1-iodobutane yield \7a.s ~70-79^. 

It is suggested that the increased bond rupture resulting from the beta 

decay of di-n-butyltelluride-131 vas due to the added recoil energy con­

verted into internal energy of the dau^ter molecule, 1-iodobutane. 

The other products observed are proposed to result from three general 

types of reactions, l) An iodine atom or ion after internal conversion 

may react with a radical or molecule-ion. 2) An iodine atom may be pro­

duced by bond rupture of the C-I bond in the daughter molecule as a direct 

result of the nonadiabatic perturbation of atomic electrons resulting from 

the sudden change in the charge of the nucleus. The iodine atom can react 

with fragments of the original organotelluride. 3) An iodine atom once 

freed may also react with a solvent molecule. 

Since the beta [Article leaves the vicinity of the nucleus in a time 

short compared to orbital electron motion, the electrons may undergo a 

nonadiabatic "shaking" resulting in electronic excitation. The result is 

a Frank-Condon transition to an excited electronic state. The C-I bond 

may be ruptured by one of many processes. The excess vibrational energy 

is distributed among the vibrational degrees of freedom of the hydro­

carbon fragment, which is the precursor of the other fragments entering 

into reactions leading to observed products. Mechanisms initiated by 

this process and yielding the observed products have been proposed. 

The data can be explained by considering the intermolecular energy 

transfer properties of the solutions and the suggested reaction 
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mechanisms. However, it is impossible from the present data to determine 

whether any, or indeed all, of the products other than the daughter mole­

cule were the result of internal conversion. 
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APPENDIX A 

liable 10. Ionization potentials of various species of interest in this 
thesis 

Molecule or radical Ionization potential (ev)^ 

n-pentane 10.55 

n-hexane 9.59 

Cyclopentane 11.1 

Benzene 9.21 

Toluene 8.82 

lodoethane 9.47 

1-Iodobutane 9.32 

Iodine (Ig) 9.41 

Methyl radical 9.9 

Ethyl radical 8.72 

1-Butyl radical 8.47 

Iodine atom 10.44 

^Reference 87. 
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APPENDIX B 

Heats of Reaction 

The heats of reaction, AH, given for the proposed mechanisms were 

calculated from heats of formation- Were AH^ for a given species not 

obtainable from literature, it was estimated using partial bond contribu­

tions for AHf (Benson) . AH^ was estimated by this method for many radi­

cals and molecules for which literature values were obtainable in order 

to determine how accurate the estimations were. 

Table 11. Heats of formation I. Molecule-ions 

Molecule-ions 

àEf 

Observed Calculated 
Reference for 
observed value 

+ 219 (87) 

+ 
224 (87) 

' + 

255 (87) 

205 (87) 
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Table 12. Heats of formation II. Molecules 

4Ef Reference for 
Molecules Observed Calculated- observed value 

% 12.5 12.8 (88) 

CgHg -20.2 -20.25 (88) 

^"*"4^10 -30.1 -30.1 (88) 

i-C^Hio -32.1 -30.1 (88) 

I-C4HQ 0.0 0.08 (88) 

-18.5 -24.65 (88) 

'̂ 6̂ 6 19.8 19.5 (88) 

CQÊ CÊ  12.0 12.0 (88) 

CÊ -CH=CĤ  4.9 4.8 (88) 

CE^ -17.9 -15.3 (80) 

-35.04 

n-CgH3_^ -39.97 

CH3I 3.3 3.5 (80) 

CHgIg 26.0 22.3 (80) 

- 2.1 - 1.4 (80) 

n-CgHyl. - 6.35 

n-C^Hgl -11.3 

32.2 

B-CgEiiI -16.2 

-21.1 

-  5 .8  

C6S5I 31.25& 

0- and p-CgE^ICHj 24.0 

^•Calculated using DH°(CgHg-l) = 57 Kcal/mole. 
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!Eable 13. Heats of formation III. Radicals 

Radicals 
AHf 

Observed Calculated 
Reference for 
observed value 

CE3. 34.0 +1 35.5®- (80) 

CgHg- 26.0 + 1 30.64 (so) 

i-CsH?" 17.6 + 1 25.6®- (80) 

71.0 + 2 63.2®" (80) 

n-C^Hg• • 17.0 + 2 20.7 (89) 

-CHg- 90.0 + 4 86.3 (89) 

CgHj- 83.0 (87) 

81.4 

n-CsH?" 22.0 (87) 

H- 52.1 . (87) 

I- 25.5 (87) 

ICgS^" 49.4 

ICHg. 54.3 

vas 
other estimations. 

calculated from the 
AHf(C.) = 47.0 + 8 

literature value 
Kcal. 

to be used for 
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